ПРАВИТЕЛЬСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ

ПОСТАНОВЛЕНИЕ от 31 октября 2009 г. N 879

ОБ УТВЕРЖДЕНИИ ПОЛОЖЕНИЯ О ЕДИНИЦАХ ВЕЛИЧИН, ДОПУСКАЕМЫХ К ПРИМЕНЕНИЮ В РОССИЙСКОЙ ФЕДЕРАЦИИ

В соответствии со статьей 6 Федерального закона "Об обеспечении единства измерений" Правительство Российской Федерации постановляет:

Утвердить прилагаемое Положение о единицах величин, допускаемых к применению в Российской Федерации.

Председатель Правительства Российской Федерации В.ПУТИН

ПОЛОЖЕНИЕ О ЕДИНИЦАХ ВЕЛИЧИН, ДОПУСКАЕМЫХ К ПРИМЕНЕНИЮ В РОССИЙСКОЙ ФЕДЕРАЦИИ

І. Общие положения

- 1. Настоящее Положение устанавливает допускаемые к применению в Российской Федерации единицы величин, их наименования и обозначения, а также правила их применения и написания.
- 2. В Российской Федерации применяются единицы величин Международной системы единиц (СИ), принятые Генеральной конференцией по мерам и весам и рекомендованные к применению Международной организацией законодательной метрологии.
 - 3. Используемые в настоящем Положении понятия означают следующее:

"величина" - свойство объекта, явления или процесса, которое может быть различимо качественно и определено количественно;

"внесистемная единица величины" - единица величины, не входящая в принятую систему единиц;

"единица величины" - фиксированное значение величины, которое принято за единицу такой величины и применяется для количественного выражения однородных с ней величин;

"когерентная единица величины" - производная единица величины, которая представляет собой произведение основных единиц, возведенных в степень, с коэффициентом пропорциональности, равным 1;

"логарифмическая единица величины" - логарифм безразмерного отношения величины к одноименной величине, принимаемой за исходную;

"Международная система единиц (СИ)" - система единиц, основанная на Международной системе величин;

"основная величина" - величина, условно принятая в качестве независимой от других величин Международной системы величин;

"основная единица СИ" - единица основной величины в Международной системе единиц (СИ);

"относительная величина" - безразмерное отношение величины к одноименной величине, принимаемой за исходную;

"производная величина" - величина, определенная через основные величины системы;

"производная единица СИ" - единица производной величины Международной системы единиц (СИ):

"система единиц величин СИ" - совокупность основных и производных единиц СИ, их десятичных кратных и дольных единиц, а также правил их использования.

II. Единицы величин, допускаемые к применению, их наименования и обозначения

- 4. В Российской Федерации допускаются к применению основные единицы СИ, производные единицы СИ и отдельные внесистемные единицы величин.
 - 5. Основные единицы Международной системы единиц (СИ) приведены в приложении N 1.
- 6. Производные единицы СИ образуются через основные единицы СИ по математическим правилам и определяются как произведение основных единиц СИ в соответствующих степенях. Отдельные производные единицы СИ имеют специальные наименования и обозначения.

Производные единицы Международной системы единиц СИ приведены в приложении N 2.

7. Внесистемные единицы величин приведены в приложении N 3. Относительные и логарифмические единицы величин приведены в приложении N 4.

III. Правила применения единиц величин

8. В Российской Федерации допускаются к применению кратные и дольные единицы от основных единиц СИ, производных единиц СИ и отдельных внесистемных единиц величин, образованные с помощью десятичных множителей и приставок.

Десятичные множители, приставки и обозначения приставок для образования кратных и дольных единиц величин приведены в приложении N 5.

- 9. В правовых актах Российской Федерации при установлении обязательных требований к величинам, измерениям и показателям соблюдения точности применяется обозначение единиц величин с использованием букв русского алфавита (далее русское обозначение единиц величин).
- 10. В технической документации (конструкторской, технологической и программной документации, технических условиях, документах по стандартизации, инструкциях, наставлениях, руководствах и положениях), в методической, научно-технической и иной документации на продукцию различных видов, а также в научно-технических печатных изданиях (включая учебники и учебные пособия) применяется международное (с использованием букв латинского или греческого алфавита) или русское обозначение единиц величин.

Одновременное применение русских и международных обозначений единиц величин не допускается, за исключением случаев, связанных с разъяснением применения таких единиц.

11. При указании единиц величин на технических средствах, устройствах и средствах измерений допускается наряду с русским обозначением единиц величин применять международное обозначение единиц величин.

IV. Правила написания единиц величин

- 12. При написании значений величин применяются обозначения единиц величин буквами или специальными знаками (°), ('), ("). При этом устанавливаются 2 вида буквенных обозначений международное обозначение единиц величин и русское обозначение единиц величин.
- 13. Буквенные обозначения единиц величин печатаются прямым шрифтом. В обозначениях единиц величин точка не ставится.
- 14. Обозначения единиц величин помещаются за числовыми значениями величин в одной строке с ними (без переноса на следующую строку). Числовое значение, представляющее собой дробь с косой чертой, стоящее перед обозначением единицы величины, заключается в скобки. Между числовым значением и обозначением единицы величины ставится пробел.

Исключения составляют обозначения единиц величин в виде знака, размещенного над строкой, перед которым пробел не ставится.

- 15. При наличии десятичной дроби в числовом значении величины обозначение единицы величины указывается после последней цифры. Между числовым значением и буквенным обозначением единицы величины ставится пробел.
- 16. При указании значений величин с предельными отклонениями значение величин и их предельные отклонения заключаются в скобки, а обозначения единиц величин помещаются за скобками или обозначения единиц величин ставятся и за числовым значением величины, и за ее предельным отклонением.
- 17. При обозначении единиц величин в пояснениях обозначений величин к формулам не допускается обозначение единиц величин в одной строке с формулами, выражающими зависимости между величинами или между их числовыми значениями, представленными в буквенной форме.
- 18. Буквенные обозначения единиц величин, входящих в произведение единиц величин, отделяются точкой на средней линии ("·"). Не допускается использование для обозначения произведения единиц величин символа "x".

Допускается отделение буквенных обозначений единиц величин, входящих в произведение, пробелами.

19. В буквенных обозначениях отношений единиц величин в качестве знака деления используется только одна косая или горизонтальная черта. Допускается применение буквенного обозначения единицы величины в виде произведения обозначений единиц величин, возведенных в степень (положительную или отрицательную).

Если для одной из единиц величин, входящих в отношение, установлено буквенное обозначение в виде отрицательной степени, косая или горизонтальная черта не применяется.

- 20. При применении косой черты буквенное обозначение единиц величин в числителе и знаменателе помещается в строку, а произведение обозначений единиц величин в знаменателе заключается в скобки.
- 21. При указании производной единицы СИ, состоящей из 2 и более единиц величин, не допускается комбинирование буквенного обозначения и наименования единиц величин (для одних единиц величин указывать обозначения, а для других наименования).
- 22. Допускается применение сочетания знаков (°), ('), ("), (%) и (промилле) с буквенными обозначениями единиц величин.
- 23. Обозначения производных единиц СИ, не имеющих специальных наименований, должны содержать минимальное число обозначений единиц величин со специальными наименованиями и основных единиц СИ с возможно более низкими показателями степени.

ОСНОВНЫЕ ЕДИНИЦЫ МЕЖДУНАРОДНОЙ СИСТЕМЫ ЕДИНИЦ (СИ)

Наименование	Единица величины						
величины	наименование	обозначе	ние	определение			
		международное	русское				
1. Длина	метр	m	М	метр — длина пути, проходимого светом в вакууме за интервал времени 1/299 792 458 секунды (XVII Генеральная конференция по мерам и весам (ГКМВ), 1983 год, Резолюция 1)			
2. Macca	килограмм	kg	кг	килограмм - единица массы, равная массе международного прототипа килограмма (I ГКМВ, 1889 год, и III ГКМВ, 1901 год)			
3. Время	секунда	s	С	секунда - время, равное 9 192 631 770 периодам излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133 (XIII ГКМВ, 1967 год, Резолюция 1)			
4. Электрический ток, сила электрического тока	ампер	A	A	ампер — сила неизменяющегося тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малой площади кругового поперечного сечения, расположенным в вакууме на расстоянии 1 метр один от другого, вызвал бы на каждом участке проводника длиной 1 метр —7 силу взаимодействия, равную 2·10 ньютона (Международный Комитет мер и весов, 1946 год,			

Резолюция 2, одобренная IX ГКМВ, 1948 год)

5. Количество вещества	моль	mol	моль	моль - количество вещества системы, содержащей столько же структурных элементов, сколько содержится атомов в углероде-12 массой 0,012 килограмма. При применении моля структурные элементы должны быть специфицированы и могут быть атомами, молекулами, ионами, электронами и другими частицами или специфицированными группами частиц (XIV ГКМВ, 1971 год, Резолюция 3)
6. Термодинамическая температура	кельвин	К	К	кельвин - единица термодинамической температуры, равная 1/273,16 части термодинамической температуры тройной точки воды (XIII ГКМВ, 1967 год, Резолюция 4)
7. Сила света	кандела	cd	кд	кандела — сила света в заданном направлении источника, испускающего монохроматическое 12 излучение частотой 540·10 герц, энергетическая сила света которого в этом направлении составляет 1/683 ватт на стерадиан (XVI ГКМВ, 1979 год, Резолюция 3)

ПРОИЗВОДНЫЕ ЕДИНИЦЫ МЕЖДУНАРОДНОЙ СИСТЕМЫ ЕДИНИЦ (СИ)

Наименование величины		Единица величины						
	наименование	обозначе	ние	выражение через основные				
		международное	русское	и производные единицы СИ				
1. Плоский угол	радиан	rad	рад	-1 м⋅м = 1				
2. Телесный угол	стерадиан	sr	ср	$ \begin{array}{ccc} 2 & -2 \\ \mathbf{M} \cdot \mathbf{M} & = 1 \end{array} $				
		2	2	2				
3. Площадь	квадратный метр	m	М	М				
4. Объем	кубический метр	3 m	3 M	З м				
5. Скорость	метр в секунду	m/s	м/с	-1 M•c				
6. Ускорение	метр на секунду в квадрате	2 m/s	2 м/с	-2 M⋅C				
7. Частота	герц	Hz	Гц	-1 c				
8. Сила	ньютон	N	Н	-2 M·KF·C				
9. Плотность	килограмм на	3 kg/m	3 кг/м	-3 kr·m				

кубический метр

10. Давление	паскаль	Pa	Па	-1 -2 M ·KF·C
11. Энергия, работа, количество теплоты	джоуль	J	Дж	2 -2 M ·KF·C
12. Теплоемкость	джоуль на кельвин	J/K	Дж/К	2 -2 -1 m ·kr·c ·K
13. Мощность	ватт	W	Вт	2 -3 M ·KF·C
14. Электрический заряд, количество электричества	кулон	С	Кл	c·A
15. Электрическое напряжение, электрический потенциал, разность электрических потенциалов,	вольт	V	В	2 -3 -1 M · KF· C · A
электродвижущая сила 16. Электрическая емкость	фарад	F	Φ	-2 -1 4 2 M ·KF ·C ·A
17. Электрическое сопротивление	OM	Омега	Ом	2 -3 -2 M ·KF·C ·A
18. Электрическая проводимость	сименс	S	См	-2 -1 3 2 M ·KF ·C ·A
19. Поток магнитной индукции, магнитный поток	вебер	Wb	Вб	2 -2 -1 M 'KF'C 'A
20. Плотность магнитного потока, магнитная индукция	тесла I	Т	Тл	-2 -1 кг·с ·A

21. Индуктивность, взаимная индуктивность	генри	Н	Гн	2 -2 -2 M ·KF·C ·A
22. Температура Цельсия	градус Цельсия	°C	°C	К
23. Световой поток	люмен	lm	ЛМ	кд•ср
24. Освещенность	люкс	lx	лк	-2 м •кд•ср
25. Активность нуклида в радиоактивном источнике (активность радионуклида)	беккерель	Вq	Бк	-1 c
26. Поглощенная доза ионизирующего излучения, керма	грей	Gy	Гр	2 -2 M · C
27. Эквивалентная доза ионизирующего излучения, эффективная доза ионизирующего излучения	зиверт	Sv	Зв	2 -2 M ·C
28. Активность катализатора	катал	kat	кат	-1 моль•с
29. Момент силы	ньютон-метр	N•m	Н•м	2 -2 M ·KF·C
30. Напряженность электрического поля	вольт на метр	V/m	В/м	-3 -1 M·KF·C ·A
31. Напряженность магнитного поля	ампер на метр	A/m	А/м	-1 м •А

м .кь .с .у

Примечание. Производные единицы СИ, имеющие специальные наименования и обозначения, могут использоваться для образования других производных единиц СИ. Допускается применение производных единиц СИ, образованных через основные единицы СИ по правилам образования когерентных единиц величин и определяемых как произведение основных единиц СИ в соответствующих степенях.

Когерентные единицы величин образуются на основе простейших уравнений связи между величинами, в которых числовые коэффициенты равны 1. При этом обозначения величин в уравнениях связи между величинами заменяются обозначениями основных единиц СИ.

Если уравнение связи между величинами содержит числовой коэффициент, отличный от 1, для образования когерентной единицы величины в правую часть уравнения подставляются значения величин в основных единицах СИ, дающих после умножения на коэффициент общее числовое значение, равное 1.

ВНЕСИСТЕМНЫЕ ЕДИНИЦЫ ВЕЛИЧИН

Наименование величины	Единица величины						
	наименование	обозначение		соотношение с	область применения		
		международное	русское	единицей СИ	(срок действия)		
1. Macca	тонна	t	Т	3 1·10 кг	все области		
	атомная единица массы	u	a.e.m.	-27 1,6605402·10 кг (приблизительно)	атомная физика		
	карат	-	кар	-4 2·10 Kr	для драгоценных камней и жемчуга		
2. Время	минута	min	МИН	60 c	все области		
	час	h	ч	3600 c			
	СУТКИ	d	СУТ	86400 c			
3. Объем, вместимость	литр	1	л	-3 3 1·10 м	все области		
4. Плоский угол	градус	o	۰	(Пи/180) рад = -2 1,745329·10 рад	все области		
	минута	•	•	(Пи/10800) рад =			

- 4

2,908882....10 рад $(\Pi \nu / 648000)$ рад = секунда 4,848137....10 рад $(\Pi u/200)$ рад = град (гон) gon град геодезия 1,57080....10 рад 11 5. Длина 1,49598·10 м астрономическая a.e. астрономия ua (приблизительно) единица 15 ly 9,4607·10 м световой год св.год (приблизительно) 16 3,0857·10 м парсек рс ПК (приблизительно) -10 ангстрем Α Α 10 м физика, оптика 1852 м морская миля n mile ВПЛИ морская и авиационная навигация ft Фут 0,3048 м фут авиационная навигация 0,0254 м дюйм inch дюйм промышленность 4 2 1.10 м 6. Площадь гектар ha сельское и лесное га хозяйство 2 2 1.10 м ap а а

				-3	
7. Сила	грамм-сила	gf	ГC	9,80665·10 н	все области (действуют до 2016 года)
	килограмм-сила	kgf	KFC	9,80665 Н	112 2 2 2112 7
	тонна-сила	tf	TC	9806,65 Н	
8. Давление	бар	bar	бар	5 1·10 Па	промышленность
о. давление	Оар	2	2	1 10 114	промышитеттоеть
	килограмм-сила на квадратный сантиметр	kgf/cm	KFC/CM	98066,5 Па	все области (действует до 2016 года)
	миллиметр водяного столба	mm H O	мм вод.ст.	9,80665 Па	все области (действует до 2016 года)
	метр водяного столба	m H O 2	м вод.ст.	9806 , 65 Па 4	все области (действует до 2016 года)
	атмосфера техническая	-	ат	9,80665·10 Па	все области (действует до 2016 года)
	миллиметр ртутного столба	mm Hg	мм рт.ст.	133,3224 Па	медицина, метеорология, авиационная навигация
9. Оптическая сила	диоптрия	-	дптр	-1 1·м	оптика
10. Линейная плотность	Tekc	tex	текс	-6 1·10 кг/м	текстильная промышленность
11. Скорость	узел	kn	λз	0,514 м/с (приблизительно)	морская навигация
				2	

12. Ускорение	гал	Gal	Гал	0,01 m/c	гравиметрия
13. Частота вращения	оборот в секунду	r/s	oб/c	-1 1 c	электротехника, промышленность
	оборот в минуту	r/min	об/мин	1/60 c = 0,016 -1 c	
				(приблизительно)	
14. Энергия	электрон-вольт	eV	эВ	-19 1,60218·10 Дж (приблизительно)	физика
	киловатт-час	kW∙h	кВт•ч	6 3,6·10 Дж	электротехника
15. Полная мощность	вольт-ампер	V•A	В•А	-	электротехника
16. Реактивная мощность	вар	var	вар	-	электротехника
17. Электрический заряд, количество электричества	ампер-час	A•h	А•ч	3 3,6·10 Кл	электротехника
18. Количество	бит	bit	бит	-	информационные
информации	байт	B (byte)	байт	-	технологии, связь
19. Скорость	бит в секунду	bit/s	бит/с	-	информационные
передачи информации	байт в секунду	B/s (byte/s)	байт/с	-	технологии, связь
20. Экспозиционная доза фотонного	рентген	R	Р	-4 2,57976·10 Кл/кг (приблизительно)	ядерная физика, медицина

излучения	
(экспозиционная	
доза гамма-	
излучения и	
рентгеновского	
излучения)	

21. Эквивалентная доза ионизирующего излучения, эффективная доза ионизирующего излучения)	бэр	rem	бэр	0,01 Зв	ядерная физика, медицина
22. Поглощенная доза	рад	rad	рад	0,01 Дж/кг	ядерная физика, медицина
23. Мощность экспозиционной дозы	рентген в секунду	R/s	P/c	10	ядерная физика, медицина
24. Активность радионуклида	кюри	Ci	Ки	3,7·10 BK	ядерная физика, медицина
25. Кинематическая вязкость	СТОКС	St	Ст	-4 2 10 м/с	промышленность
26. Количество теплоты, термодинамический	калория (международная)	cal	кал	4,1868 Дж	промышленность
потенциал	калория термохимическая	cal th	кал ТХ	4,1840 Дж (приблизительно)	промышленность
	калория 15-градусная	cal 15	кал 15	4,1855 Дж (приблизительно)	промышленность
27. Тепловой поток (тепловая мощность)	калория в секунду	cal/s	кал/с	4,1868 Вт	промышленность
	килокалория в час	kcal/h	ккал/ч	1,163 Вт	

Примечания: 1. Внесистемные единицы величин применяются только в случаях, когда количественные значения величин невозможно или нецелесообразно выражать в единицах СИ;

- 2. Наименования и обозначения единиц массы (атомная единица массы, карат), времени, плоского угла, длины, площади, давления, оптической силы, линейной плотности, ускорения, частоты вращения не применяются с приставками.
- 3. Для величины времени допускается применение других единиц, получивших широкое распространение, например, неделя, месяц, год, век, тысячелетие, наименования и обозначения которых не применяют с приставками.
 - 4. Для единицы объема вместимости "литр" (буквенное обозначение 1 "эль") допускается обозначение L.
 - 5. Обозначения единиц плоского угла "градус", "минута", "секунда" пишутся над строкой.
- 6. Наименование и обозначение единицы количества информации "байт" (1 байт = 8 бит) применяются с двоичными приставками "Кило", "Мега", "Гига", 10 20 30 которые соответствуют множителям "2 ", "2 " и "2 " (1 Кбайт = 1024 байт, 1 Мбайт = 1024 Кбайт, 1 Гбайт = 1024 Мбайт). Данные приставки пишутся с большой буквы. Допускается применение международного обозначения единицы информации с приставками "К" "М" "G", рекомендованного Международным стандартом Международной электротехнической комиссии МЭК 60027-2 (КВ, МВ, GB, Кbyte, Mbyte, Gbyte).
- 7. Допускается применение других внесистемных единиц величин. При этом наименования внесистемных единиц величин применяются совместно с указанием их соотношений с основными и производными единицами СИ.

ОТНОСИТЕЛЬНЫЕ И ЛОГАРИФМИЧЕСКИЕ ЕДИНИЦЫ ВЕЛИЧИН

	<u> </u>				
Наименование величины	Единица величины				
	наименование	обозначение		значение	
		международное	русское		
1. Относительная величина: КПД; относительное удлинение;	единица	1	1	1 -2	
относительная плотность; деформация; относительные	процент	00	90	1·10 -3	
диэлектрическая и магнитная проницаемости; магнитная	промилле	промилле	промилле -1	1·10 -6	
восприимчивость; массовая доля компонента; молярная доля компонента и т.п.	миллионная доля	ppm	МЛН	1.10	
2. Логарифмическая величина: уровень звукового давления; усиление, ослабление и т.п.	бел	В	Б	1 Б = lg(P /P) при P = 2 1 2 10P 1 1 Б = 2 lg (F /F при 2 1 F = / 10 F, 2 \/ 1 где P, P - такие 1 2 одноименные величины, как мощность, энергия, плотность энергии и т.п.; F, F - такие одноименные 1 2 величины, как напряжение,	

сила тока, напряженность поля и т.п.

	децибел	dB	дБ	0,1 Б
3. Логарифмическая величина - уровень громкости	фон	phon	фон	1 фон равен уровню громкости звука, для которого уровень звукового давления равного с ним по уровню громкости звука частотой 1000 Гц равен 1 дБ
4. Логарифмическая величина - частотный интервал	ОКТАВА	-	OKT	1 октава равна $log (f/f)$ 2 2 1 при $f/f = 2$, где f , $f-2$ 1 2 частоты
	декада	-	дек	1 декада равна $lg(f/f)$ 2 1 при $f/f=10$, где f , f 2 1 1 2 - частоты
5. Логарифмическая величина: ослабление напряжения, ослабление силы тока, ослабление напряженности поля и т.п.	непер	Np	Ηπ	1 Нп = ln(F /F) при 2 1 F /F = e = 2,718, 2 1 где F , F - такие 1 2 одноименные величины, как напряжение, сила тока, напряженность поля и т.п., е - основание натуральных логарифмов. 1 Нп = 0,8686 Б = 8,686 дБ

ДЕСЯТИЧНЫЕ МНОЖИТЕЛИ, ПРИСТАВКИ И ОБОЗНАЧЕНИЯ ПРИСТАВОК ДЛЯ ОБРАЗОВАНИЯ КРАТНЫХ И ДОЛЬНЫХ ЕДИНИЦ ВЕЛИЧИН

Десятичный	Приставка	Обозначение приставки		Десятичный	Приставка	Обозначение приставки	
множитель		международное	русское	множитель		международное	русское
24 10	иотта	Y	И	-1 10	деци	d	д
21 10	зетта	Z	3	-2 10	санти	С	С
18 10	экса	E	Э	-3 10	МИЛЛИ	m	М
15 10	пета	Р	П	-6 10	микро	мю	MK
12 10	тера	Т	Т	-9 10	нано	n	Н
9 10	гига	G	Г	-12 10	пико	р	П
6 10	мега	М	М	-15 10	фемто	f	Ф
3 10	кило	k	к	-18 10	атто	a	a
2 10	гекто	h	r	-21 10	зепто	Z	3

Примечание. Для образования кратных и дольных единиц массы вместо единицы массы - килограмм используется дольная единица массы - грамм и приставка присоединяется к слову "грамм". Дольная единица массы - грамм применяется без присоединения приставки.

При написании наименований и обозначений десятичных кратных и дольных единиц СИ, образованных с помощью приставок, приставка или ее обозначение пишется слитно с наименованием или обозначением единицы.

Допускается присоединение приставки ко второму множителю произведения или к знаменателю в случаях, когда такие единицы широко распространены.

К наименованию и обозначению исходной единицы не присоединяются 2 или более приставки одновременно.

Наименования десятичных кратных и дольных единиц исходной единицы, возведенной в степень, образуются путем присоединения приставки к наименованию исходной единицы.

Обозначения десятичных кратных и дольных единиц исходной единицы, возведенной в степень, образуются добавлением соответствующего показателя степени к обозначению десятичной кратной или дольной единицы исходной единицы. При этом показатель степени означает возведение в степень десятичной кратной или дольной единицы вместе с приставкой.